"Москва-Сити" самый высотный лифт в Европе

Москва-Сити самый высотный лифт в Европе
В деловом центре "Москва-Сити" в небоскребе "Башня "Федерация" запустили лифт с самой высокой в Европе шахтой: кабина лифта следует с минус второго на 94-й этаж, говорится в сообщении владеющей высоткой корпорации AEON.

Грузопассажирский лифт поднимается на высоту 355 метров над землей, общий путь движения с учетом подземных этажей составляет 365 метров. Скорость лифта достигает 8 метров в секунду, грузоподъемность — 2 тонны, следует из пресс-релиза.

Запуск лифта состоялся одновременно с открытием южной входа в "Башне "Федерация. Восток".

Самый высокий в Европе каток находится на крыше "Москва-Сити". Часы на куполе концертного зала в деловом центре "Москва-сити" самые большие в мире часы, опережающие даже текущий рекорд книги Гиннесса – часы диаметром 43 метра на новом небоскребе в Мекке".

В дополнение хотелось бы сказать, Россия еще может стать лидером в углеродных нанотехнологиях. С момента открытия углеродных нанотрубок нам обещают создать космические лифты, способные поднимать грузы в космос с поверхности Земли по тросу из нанотрубок. Возможно ли изготовление таких длинных волокон?

— Безусловно. Несколько лет назад нам уже показывали волокно из упорядоченных нанотрубок, превосходящее по прочности стальной трос. Но вопрос в том, нужны ли такие конструкции? Я считаю, что потребности в этом нет. У нас сейчас нет "космической гонки" с США, нет необходимости первыми чего-то достичь любой ценой, и у них тоже ее нет." - рассказал известный российский физик Александр Вуль.

Александр Вуль, заведующий лабораторией в Физико-техническом институте РАН имени Иоффе в Санкт-Петербурге, считается одним из ведущих специалистов в физике углеродных наночастиц в России.

"Почему углерод, почему он так важен для нас? Углерод является одним из самых распространенных элементов во Вселенной. Вся органическая химия, по сути, основана на бензольном кольце, который в некотором роде можно представить как своеобразную наноструктуру-шарик. В отличие от других элементов своей группы, только углерод может образовать разные кристаллические структуры – алмаз, графит и ряд других вещей. Кремний этого не может делать", — говорил Вуль.

Главный вклад российских ученых в открытия, касающиеся углеродных наночастиц, был совершен в двух других областях – в синтезе так называемых "детонационных" наноалмазов и в производстве так называемого нанопористого углерода.

"Если бы мы сегодня остановили производство обычных искусственных алмазов, то вся промышленность цветных металлов просто бы встала, так как нечем было бы их обрабатывать. И это производство было неплохо развито в Советском союзе – только один Полтавский завод на Украине производил примерно четверть синтетических алмазов, которые закупались американскими клиентами", — рассказывает Вуль.

Методика изготовления этих алмазов была изобретена не в России, а в США в середине 1950 годов компанией General Electric, однако следующий этап в "миниатюризации" алмазов был сделан в Советском Союзе.

"У наших ученых родилась другая блестящая идея – создавать алмазы не из графита, а из одиночных атомов углерода во взрывчатых веществах, используя энергию взрыва как источник высокого давления и температур. Это открытие было сделано трижды из-за высокой секретности таких работ, а первая публикация об этой методике вышла в свет через десятилетия после ее создания", — объясняет ученый.

Первенство России в этой области, как подчеркивает Вуль, не вызывает сомнения в мире, однако наша промышленность проигрывает конкурентную борьбу и теряет эти технологии – их больше применяют в Китае и в других зарубежных странах, нежели в России.

"Это то, где мы могли иметь мировой приоритет, и в производстве, и в применении детонационных алмазов. Сейчас здесь крайне жесткая конкуренция, и мы имели бы огромное преимущество за счет продвинутой отрасли взрывчатых веществ. Очень обидно, что впервые сделали у нас, а потом, в силу известных причин, не мы начинаем это использовать".

Нечто похожее произошло со вторым большим открытием российских ученых – нанопористый углерод был открыт в Петербургском технологическом институте, однако патентом на его производство и использование обладает эстонская фирма Skeleton Technologies, которая, как считает Вуль, в ближайшее время станет крупнейшим производителем суперконденсаторов на базе этого материала и уже не российской технологии.

Другой углеродный наноматериал, к созданию которого Россия тоже имеет отношение – графен, пока не оправдывает ожиданий. Графен, по словам Вуля, могли так же открыть в Советском Союзе, однако из-за ошибки Льва Ландау, считавшего такие материалы не существующими в природе, никто даже не пытался создать его из-за высокого авторитета академика.

"Когда графен открыли Костя Новоселов и Андрей Гейм, все сразу обратили внимание на высокую подвижность электронов в этом материале. Именно поэтому Гейм, когда он еще не был лауреатом Нобелевки, сразу говорил, что его основной приоритет – терагерцовая электроника", — продолжает физик.

Как Вуль пояснил РИА "Новости", он считает, что первооткрыватели графена сознательно умолчали о том, что данный материал невозможно сделать полупроводником из-за отсутствия в нем так называемой "запрещенной зоны". Это фактически не позволяет создавать "чистую" электронику на базе графена и вынуждает ученых идти на серьезные компромиссы, сочетая графен с другими материалами, что пока не позволяет создать транзисторы, способные работать на частотах в тысячи терагерц. Пройдут десятки лет, прежде чем графеновая электроника станет реальностью, считает петербургский ученый.

"Мы поздновато вступили в гонку производителей нанотрубок, и ученые в этом не виноваты. Для того, чтобы развивать технологии их производства, нужны не деньги, а электронные микроскопы и другие инструменты. Заказчикам нужны не просто нанотрубки, а трубки с определенными свойствами. Такие микроскопы в 1990 годах были всего в двух институтах в Новосибирске. Наша промышленность ничего не хочет делать, объемы производства не растут, и Россия уступает зарубежным конкурентам. Наши разработки доводятся до ума за рубежом, и мы получаем пустое место", — продолжает Вуль.

С другой стороны, в некоторых других областях вполне можно захватить лидерство, если обратить на них внимание. Как отмечает физик, сегодня очень быстро развиваются полимерные солнечные батареи на базе фуллеренов, обладающие высокой гибкостью и прозрачностью. Их создание и производство в России может поднять российскую наноиндустрию на мировой уровень. Такие батареи будут обладать средней эффективностью, однако они будут дешевы и удобны в использовании.

Как отметил Чубайс, это направление уже сегодня развивается в рамках "Роснано", и сейчас госкорпорация строит центр гибкой полимерной электроники, где эти технологии обретут смысл для существования. По его словам, компания и частные инвесторы готовятся вложить очень большие деньги в этот проект.

Еще одно интересное направление – суперконденсаторы на базе нанопористого углерода. Такие конденсаторы будут удерживать рекордное количество электричества, но пока технологии не отработаны не до конца, нет общего стандарта их изготовления.

Это позволяет отечественной нанопромышленности "вписаться" в этот рынок, несмотря на присутствие сильных конкурентов, подобрав удачную комбинацию электролита и углеродного материала. Такие конденсаторы смогут стать основой для электромобилей и других устройств, где нужно быстро отдать большое количество энергии. Небольшие конденсаторы такого типа в России уже создает фирма "Герикон", однако нужно выходить, как считает петербургский ученый, на другие масштабы.

Источник: https://ria.ru

 
Rambler's Top100 Яндекс.Метрика